Copied to
clipboard

G = S3×C324Q8order 432 = 24·33

Direct product of S3 and C324Q8

direct product, metabelian, supersoluble, monomial

Aliases: S3×C324Q8, C12.56S32, C339(C2×Q8), C34(S3×Dic6), (S3×C12).9S3, (C3×S3)⋊2Dic6, (S3×C6).39D6, (S3×C32)⋊4Q8, C3214(S3×Q8), C334Q85C2, C338Q85C2, (C3×C12).138D6, C3⋊Dic3.34D6, C328(C2×Dic6), (C3×Dic3).34D6, (C32×C6).38C23, C335C4.7C22, (C32×C12).40C22, (C32×Dic3).21C22, C6.48(C2×S32), C4.5(S3×C3⋊S3), (S3×C3×C12).4C2, D6.8(C2×C3⋊S3), C12.21(C2×C3⋊S3), C6.1(C22×C3⋊S3), (C4×S3).1(C3⋊S3), C31(C2×C324Q8), (S3×C3×C6).23C22, Dic3.7(C2×C3⋊S3), (S3×C3⋊Dic3).2C2, (C3×C324Q8)⋊8C2, (C3×C6).97(C22×S3), (C3×C3⋊Dic3).17C22, C2.5(C2×S3×C3⋊S3), SmallGroup(432,660)

Series: Derived Chief Lower central Upper central

C1C32×C6 — S3×C324Q8
C1C3C32C33C32×C6S3×C3×C6S3×C3⋊Dic3 — S3×C324Q8
C33C32×C6 — S3×C324Q8
C1C2C4

Generators and relations for S3×C324Q8
 G = < a,b,c,d,e,f | a3=b2=c3=d3=e4=1, f2=e2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=c-1, de=ed, fdf-1=d-1, fef-1=e-1 >

Subgroups: 1328 in 276 conjugacy classes, 80 normal (22 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C2×C4, Q8, C32, C32, C32, Dic3, Dic3, C12, C12, C12, D6, C2×C6, C2×Q8, C3×S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, C4×S3, C2×Dic3, C2×C12, C3×Q8, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C62, C2×Dic6, S3×Q8, S3×C32, C32×C6, S3×Dic3, C322Q8, C3×Dic6, S3×C12, C324Q8, C324Q8, C2×C3⋊Dic3, C6×C12, C32×Dic3, C3×C3⋊Dic3, C335C4, C32×C12, S3×C3×C6, S3×Dic6, C2×C324Q8, S3×C3⋊Dic3, C334Q8, S3×C3×C12, C3×C324Q8, C338Q8, S3×C324Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C3⋊S3, Dic6, C22×S3, S32, C2×C3⋊S3, C2×Dic6, S3×Q8, C324Q8, C2×S32, C22×C3⋊S3, S3×C3⋊S3, S3×Dic6, C2×C324Q8, C2×S3×C3⋊S3, S3×C324Q8

Smallest permutation representation of S3×C324Q8
On 144 points
Generators in S144
(1 29 21)(2 30 22)(3 31 23)(4 32 24)(5 50 34)(6 51 35)(7 52 36)(8 49 33)(9 115 141)(10 116 142)(11 113 143)(12 114 144)(13 37 59)(14 38 60)(15 39 57)(16 40 58)(17 125 117)(18 126 118)(19 127 119)(20 128 120)(25 140 133)(26 137 134)(27 138 135)(28 139 136)(41 78 71)(42 79 72)(43 80 69)(44 77 70)(45 53 75)(46 54 76)(47 55 73)(48 56 74)(61 68 96)(62 65 93)(63 66 94)(64 67 95)(81 89 110)(82 90 111)(83 91 112)(84 92 109)(85 108 124)(86 105 121)(87 106 122)(88 107 123)(97 130 104)(98 131 101)(99 132 102)(100 129 103)
(1 110)(2 111)(3 112)(4 109)(5 85)(6 86)(7 87)(8 88)(9 78)(10 79)(11 80)(12 77)(13 100)(14 97)(15 98)(16 99)(17 73)(18 74)(19 75)(20 76)(21 81)(22 82)(23 83)(24 84)(25 94)(26 95)(27 96)(28 93)(29 89)(30 90)(31 91)(32 92)(33 107)(34 108)(35 105)(36 106)(37 103)(38 104)(39 101)(40 102)(41 115)(42 116)(43 113)(44 114)(45 119)(46 120)(47 117)(48 118)(49 123)(50 124)(51 121)(52 122)(53 127)(54 128)(55 125)(56 126)(57 131)(58 132)(59 129)(60 130)(61 135)(62 136)(63 133)(64 134)(65 139)(66 140)(67 137)(68 138)(69 143)(70 144)(71 141)(72 142)
(1 40 33)(2 37 34)(3 38 35)(4 39 36)(5 30 59)(6 31 60)(7 32 57)(8 29 58)(9 135 126)(10 136 127)(11 133 128)(12 134 125)(13 50 22)(14 51 23)(15 52 24)(16 49 21)(17 144 137)(18 141 138)(19 142 139)(20 143 140)(25 120 113)(26 117 114)(27 118 115)(28 119 116)(41 96 48)(42 93 45)(43 94 46)(44 95 47)(53 79 62)(54 80 63)(55 77 64)(56 78 61)(65 75 72)(66 76 69)(67 73 70)(68 74 71)(81 99 123)(82 100 124)(83 97 121)(84 98 122)(85 90 129)(86 91 130)(87 92 131)(88 89 132)(101 106 109)(102 107 110)(103 108 111)(104 105 112)
(1 16 8)(2 13 5)(3 14 6)(4 15 7)(9 138 118)(10 139 119)(11 140 120)(12 137 117)(17 114 134)(18 115 135)(19 116 136)(20 113 133)(21 58 33)(22 59 34)(23 60 35)(24 57 36)(25 128 143)(26 125 144)(27 126 141)(28 127 142)(29 40 49)(30 37 50)(31 38 51)(32 39 52)(41 61 74)(42 62 75)(43 63 76)(44 64 73)(45 79 65)(46 80 66)(47 77 67)(48 78 68)(53 72 93)(54 69 94)(55 70 95)(56 71 96)(81 132 107)(82 129 108)(83 130 105)(84 131 106)(85 111 100)(86 112 97)(87 109 98)(88 110 99)(89 102 123)(90 103 124)(91 104 121)(92 101 122)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 76 3 74)(2 75 4 73)(5 42 7 44)(6 41 8 43)(9 123 11 121)(10 122 12 124)(13 62 15 64)(14 61 16 63)(17 111 19 109)(18 110 20 112)(21 54 23 56)(22 53 24 55)(25 130 27 132)(26 129 28 131)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 65 39 67)(38 68 40 66)(49 80 51 78)(50 79 52 77)(57 95 59 93)(58 94 60 96)(81 128 83 126)(82 127 84 125)(85 116 87 114)(86 115 88 113)(89 120 91 118)(90 119 92 117)(97 135 99 133)(98 134 100 136)(101 137 103 139)(102 140 104 138)(105 141 107 143)(106 144 108 142)

G:=sub<Sym(144)| (1,29,21)(2,30,22)(3,31,23)(4,32,24)(5,50,34)(6,51,35)(7,52,36)(8,49,33)(9,115,141)(10,116,142)(11,113,143)(12,114,144)(13,37,59)(14,38,60)(15,39,57)(16,40,58)(17,125,117)(18,126,118)(19,127,119)(20,128,120)(25,140,133)(26,137,134)(27,138,135)(28,139,136)(41,78,71)(42,79,72)(43,80,69)(44,77,70)(45,53,75)(46,54,76)(47,55,73)(48,56,74)(61,68,96)(62,65,93)(63,66,94)(64,67,95)(81,89,110)(82,90,111)(83,91,112)(84,92,109)(85,108,124)(86,105,121)(87,106,122)(88,107,123)(97,130,104)(98,131,101)(99,132,102)(100,129,103), (1,110)(2,111)(3,112)(4,109)(5,85)(6,86)(7,87)(8,88)(9,78)(10,79)(11,80)(12,77)(13,100)(14,97)(15,98)(16,99)(17,73)(18,74)(19,75)(20,76)(21,81)(22,82)(23,83)(24,84)(25,94)(26,95)(27,96)(28,93)(29,89)(30,90)(31,91)(32,92)(33,107)(34,108)(35,105)(36,106)(37,103)(38,104)(39,101)(40,102)(41,115)(42,116)(43,113)(44,114)(45,119)(46,120)(47,117)(48,118)(49,123)(50,124)(51,121)(52,122)(53,127)(54,128)(55,125)(56,126)(57,131)(58,132)(59,129)(60,130)(61,135)(62,136)(63,133)(64,134)(65,139)(66,140)(67,137)(68,138)(69,143)(70,144)(71,141)(72,142), (1,40,33)(2,37,34)(3,38,35)(4,39,36)(5,30,59)(6,31,60)(7,32,57)(8,29,58)(9,135,126)(10,136,127)(11,133,128)(12,134,125)(13,50,22)(14,51,23)(15,52,24)(16,49,21)(17,144,137)(18,141,138)(19,142,139)(20,143,140)(25,120,113)(26,117,114)(27,118,115)(28,119,116)(41,96,48)(42,93,45)(43,94,46)(44,95,47)(53,79,62)(54,80,63)(55,77,64)(56,78,61)(65,75,72)(66,76,69)(67,73,70)(68,74,71)(81,99,123)(82,100,124)(83,97,121)(84,98,122)(85,90,129)(86,91,130)(87,92,131)(88,89,132)(101,106,109)(102,107,110)(103,108,111)(104,105,112), (1,16,8)(2,13,5)(3,14,6)(4,15,7)(9,138,118)(10,139,119)(11,140,120)(12,137,117)(17,114,134)(18,115,135)(19,116,136)(20,113,133)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,128,143)(26,125,144)(27,126,141)(28,127,142)(29,40,49)(30,37,50)(31,38,51)(32,39,52)(41,61,74)(42,62,75)(43,63,76)(44,64,73)(45,79,65)(46,80,66)(47,77,67)(48,78,68)(53,72,93)(54,69,94)(55,70,95)(56,71,96)(81,132,107)(82,129,108)(83,130,105)(84,131,106)(85,111,100)(86,112,97)(87,109,98)(88,110,99)(89,102,123)(90,103,124)(91,104,121)(92,101,122), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,76,3,74)(2,75,4,73)(5,42,7,44)(6,41,8,43)(9,123,11,121)(10,122,12,124)(13,62,15,64)(14,61,16,63)(17,111,19,109)(18,110,20,112)(21,54,23,56)(22,53,24,55)(25,130,27,132)(26,129,28,131)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,65,39,67)(38,68,40,66)(49,80,51,78)(50,79,52,77)(57,95,59,93)(58,94,60,96)(81,128,83,126)(82,127,84,125)(85,116,87,114)(86,115,88,113)(89,120,91,118)(90,119,92,117)(97,135,99,133)(98,134,100,136)(101,137,103,139)(102,140,104,138)(105,141,107,143)(106,144,108,142)>;

G:=Group( (1,29,21)(2,30,22)(3,31,23)(4,32,24)(5,50,34)(6,51,35)(7,52,36)(8,49,33)(9,115,141)(10,116,142)(11,113,143)(12,114,144)(13,37,59)(14,38,60)(15,39,57)(16,40,58)(17,125,117)(18,126,118)(19,127,119)(20,128,120)(25,140,133)(26,137,134)(27,138,135)(28,139,136)(41,78,71)(42,79,72)(43,80,69)(44,77,70)(45,53,75)(46,54,76)(47,55,73)(48,56,74)(61,68,96)(62,65,93)(63,66,94)(64,67,95)(81,89,110)(82,90,111)(83,91,112)(84,92,109)(85,108,124)(86,105,121)(87,106,122)(88,107,123)(97,130,104)(98,131,101)(99,132,102)(100,129,103), (1,110)(2,111)(3,112)(4,109)(5,85)(6,86)(7,87)(8,88)(9,78)(10,79)(11,80)(12,77)(13,100)(14,97)(15,98)(16,99)(17,73)(18,74)(19,75)(20,76)(21,81)(22,82)(23,83)(24,84)(25,94)(26,95)(27,96)(28,93)(29,89)(30,90)(31,91)(32,92)(33,107)(34,108)(35,105)(36,106)(37,103)(38,104)(39,101)(40,102)(41,115)(42,116)(43,113)(44,114)(45,119)(46,120)(47,117)(48,118)(49,123)(50,124)(51,121)(52,122)(53,127)(54,128)(55,125)(56,126)(57,131)(58,132)(59,129)(60,130)(61,135)(62,136)(63,133)(64,134)(65,139)(66,140)(67,137)(68,138)(69,143)(70,144)(71,141)(72,142), (1,40,33)(2,37,34)(3,38,35)(4,39,36)(5,30,59)(6,31,60)(7,32,57)(8,29,58)(9,135,126)(10,136,127)(11,133,128)(12,134,125)(13,50,22)(14,51,23)(15,52,24)(16,49,21)(17,144,137)(18,141,138)(19,142,139)(20,143,140)(25,120,113)(26,117,114)(27,118,115)(28,119,116)(41,96,48)(42,93,45)(43,94,46)(44,95,47)(53,79,62)(54,80,63)(55,77,64)(56,78,61)(65,75,72)(66,76,69)(67,73,70)(68,74,71)(81,99,123)(82,100,124)(83,97,121)(84,98,122)(85,90,129)(86,91,130)(87,92,131)(88,89,132)(101,106,109)(102,107,110)(103,108,111)(104,105,112), (1,16,8)(2,13,5)(3,14,6)(4,15,7)(9,138,118)(10,139,119)(11,140,120)(12,137,117)(17,114,134)(18,115,135)(19,116,136)(20,113,133)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,128,143)(26,125,144)(27,126,141)(28,127,142)(29,40,49)(30,37,50)(31,38,51)(32,39,52)(41,61,74)(42,62,75)(43,63,76)(44,64,73)(45,79,65)(46,80,66)(47,77,67)(48,78,68)(53,72,93)(54,69,94)(55,70,95)(56,71,96)(81,132,107)(82,129,108)(83,130,105)(84,131,106)(85,111,100)(86,112,97)(87,109,98)(88,110,99)(89,102,123)(90,103,124)(91,104,121)(92,101,122), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,76,3,74)(2,75,4,73)(5,42,7,44)(6,41,8,43)(9,123,11,121)(10,122,12,124)(13,62,15,64)(14,61,16,63)(17,111,19,109)(18,110,20,112)(21,54,23,56)(22,53,24,55)(25,130,27,132)(26,129,28,131)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,65,39,67)(38,68,40,66)(49,80,51,78)(50,79,52,77)(57,95,59,93)(58,94,60,96)(81,128,83,126)(82,127,84,125)(85,116,87,114)(86,115,88,113)(89,120,91,118)(90,119,92,117)(97,135,99,133)(98,134,100,136)(101,137,103,139)(102,140,104,138)(105,141,107,143)(106,144,108,142) );

G=PermutationGroup([[(1,29,21),(2,30,22),(3,31,23),(4,32,24),(5,50,34),(6,51,35),(7,52,36),(8,49,33),(9,115,141),(10,116,142),(11,113,143),(12,114,144),(13,37,59),(14,38,60),(15,39,57),(16,40,58),(17,125,117),(18,126,118),(19,127,119),(20,128,120),(25,140,133),(26,137,134),(27,138,135),(28,139,136),(41,78,71),(42,79,72),(43,80,69),(44,77,70),(45,53,75),(46,54,76),(47,55,73),(48,56,74),(61,68,96),(62,65,93),(63,66,94),(64,67,95),(81,89,110),(82,90,111),(83,91,112),(84,92,109),(85,108,124),(86,105,121),(87,106,122),(88,107,123),(97,130,104),(98,131,101),(99,132,102),(100,129,103)], [(1,110),(2,111),(3,112),(4,109),(5,85),(6,86),(7,87),(8,88),(9,78),(10,79),(11,80),(12,77),(13,100),(14,97),(15,98),(16,99),(17,73),(18,74),(19,75),(20,76),(21,81),(22,82),(23,83),(24,84),(25,94),(26,95),(27,96),(28,93),(29,89),(30,90),(31,91),(32,92),(33,107),(34,108),(35,105),(36,106),(37,103),(38,104),(39,101),(40,102),(41,115),(42,116),(43,113),(44,114),(45,119),(46,120),(47,117),(48,118),(49,123),(50,124),(51,121),(52,122),(53,127),(54,128),(55,125),(56,126),(57,131),(58,132),(59,129),(60,130),(61,135),(62,136),(63,133),(64,134),(65,139),(66,140),(67,137),(68,138),(69,143),(70,144),(71,141),(72,142)], [(1,40,33),(2,37,34),(3,38,35),(4,39,36),(5,30,59),(6,31,60),(7,32,57),(8,29,58),(9,135,126),(10,136,127),(11,133,128),(12,134,125),(13,50,22),(14,51,23),(15,52,24),(16,49,21),(17,144,137),(18,141,138),(19,142,139),(20,143,140),(25,120,113),(26,117,114),(27,118,115),(28,119,116),(41,96,48),(42,93,45),(43,94,46),(44,95,47),(53,79,62),(54,80,63),(55,77,64),(56,78,61),(65,75,72),(66,76,69),(67,73,70),(68,74,71),(81,99,123),(82,100,124),(83,97,121),(84,98,122),(85,90,129),(86,91,130),(87,92,131),(88,89,132),(101,106,109),(102,107,110),(103,108,111),(104,105,112)], [(1,16,8),(2,13,5),(3,14,6),(4,15,7),(9,138,118),(10,139,119),(11,140,120),(12,137,117),(17,114,134),(18,115,135),(19,116,136),(20,113,133),(21,58,33),(22,59,34),(23,60,35),(24,57,36),(25,128,143),(26,125,144),(27,126,141),(28,127,142),(29,40,49),(30,37,50),(31,38,51),(32,39,52),(41,61,74),(42,62,75),(43,63,76),(44,64,73),(45,79,65),(46,80,66),(47,77,67),(48,78,68),(53,72,93),(54,69,94),(55,70,95),(56,71,96),(81,132,107),(82,129,108),(83,130,105),(84,131,106),(85,111,100),(86,112,97),(87,109,98),(88,110,99),(89,102,123),(90,103,124),(91,104,121),(92,101,122)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,76,3,74),(2,75,4,73),(5,42,7,44),(6,41,8,43),(9,123,11,121),(10,122,12,124),(13,62,15,64),(14,61,16,63),(17,111,19,109),(18,110,20,112),(21,54,23,56),(22,53,24,55),(25,130,27,132),(26,129,28,131),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,65,39,67),(38,68,40,66),(49,80,51,78),(50,79,52,77),(57,95,59,93),(58,94,60,96),(81,128,83,126),(82,127,84,125),(85,116,87,114),(86,115,88,113),(89,120,91,118),(90,119,92,117),(97,135,99,133),(98,134,100,136),(101,137,103,139),(102,140,104,138),(105,141,107,143),(106,144,108,142)]])

63 conjugacy classes

class 1 2A2B2C3A···3E3F3G3H3I4A4B4C4D4E4F6A···6E6F6G6H6I6J···6Q12A···12H12I···12Q12R···12Y12Z12AA
order12223···333334444446···666666···612···1212···1212···121212
size11332···2444426181854542···244446···62···24···46···63636

63 irreducible representations

dim111111222222224444
type++++++++-++++-+-+-
imageC1C2C2C2C2C2S3S3Q8D6D6D6D6Dic6S32S3×Q8C2×S32S3×Dic6
kernelS3×C324Q8S3×C3⋊Dic3C334Q8S3×C3×C12C3×C324Q8C338Q8S3×C12C324Q8S3×C32C3×Dic3C3⋊Dic3C3×C12S3×C6C3×S3C12C32C6C3
# reps1221114124254164148

Matrix representation of S3×C324Q8 in GL8(𝔽13)

10000000
01000000
00100000
00010000
00001000
00000100
00000001
0000001212
,
10000000
01000000
00100000
00010000
000012000
000001200
00000010
0000001212
,
10000000
01000000
001210000
001200000
000001200
000011200
00000010
00000001
,
10000000
01000000
001210000
001200000
00001000
00000100
00000010
00000001
,
128000000
31000000
001200000
000120000
00001000
00000100
00000010
00000001
,
126000000
41000000
001200000
001210000
000001200
000012000
00000010
00000001

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,3,0,0,0,0,0,0,8,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,4,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

S3×C324Q8 in GAP, Magma, Sage, TeX

S_3\times C_3^2\rtimes_4Q_8
% in TeX

G:=Group("S3xC3^2:4Q8");
// GroupNames label

G:=SmallGroup(432,660);
// by ID

G=gap.SmallGroup(432,660);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,135,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^3=e^4=1,f^2=e^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=c^-1,d*e=e*d,f*d*f^-1=d^-1,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽